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Abstract

Consider a dynamic mechanism design problem in which the agent's hidden type fol-

lows an N -state Markov chain as in Fernandes and Phelan (2000). If the Markov chain's

transition probabilities are mixtures of K(≤ N) densities whose mixture proportions

encapsulate the dependence on the previous state, there exists a well-behaved recursive

formulation of the problem with K, as opposed to N , continuous state variables. This

result makes it possible to formulate computationally tractable models in which the

hidden type process contains both persistent and transitory components, each of which

can take many distinct values.

1 Introduction

In recent years, dynamic mechanism design theory has found applications in a variety of

�elds ranging from �nance to public economics. As a result of this success, there is now

ongoing interest in making these applications quantitative. One technical challenge in doing

so however has been computational: it has proved challenging to compute dynamic optimal

mechanisms in many realistically parametrized models using existing methods.

To describe the source of this challenge, it is useful to start with some background. The

�rst models to highlight the role of multiperiod contracts when informational asymmetries

∗An earlier version of the paper was entitled �Computing Dynamic Optimal Mechanisms When Private
Shocks Are Persistent.� We thank workshop and conference participants, the reviewers, Johannes Hörner,
Larry Jones, Narayana Kocherlakota, Ellen McGrattan, Kevin Wiseman, and especially Chris Phelan for
useful communications. Valuable computational resources were provided by the Minnesota Supercomputing
Institute during an early stage of the project.
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impede risk sharing were presented by Radner (1981) and Townsend (1982). These papers

showed how superior insurance can be achieved through contracts that span multiple peri-

ods. The crux of their �ndings was that such contracts can give people stronger incentives

to behave honestly by making resource transfers history dependent. This insight was an im-

portant one, but the implied history dependence also made it challenging to obtain sharper

characterizations of optimal contracts.

A breakthrough in conquering this challenge was achieved by Green (1987), Spear and

Srivastava (1987), and Thomas and Worrall (1990), who showed how optimal multiperiod

contracts can be characterized as solutions to well-behaved1 dynamic programming problems

with small state spaces. Their essential step was to take continuation utilities as an endoge-

nous state variable, an idea related to one explored by Abreu, Pearce, and Stacchetti (1990)

in the context of repeated games. Somewhat remarkably, this made it possible to compute

and describe such contracts by keeping track of a single variable instead of entire histories.

The resulting recursive formulation led to a substantial clari�cation of the mechanics and

served as a useful foundation for a number of theoretical studies.

In its original form, however, this formulation was still limited by the fact that it is

valid only if privately observed shocks are taken to be serially independent. This restriction

is problematic for many quantitative purposes because serial dependence is often a stark

feature of reality. Indeed, one naturally thinks that such variables as income or productivity

contain sizable persistent components, and it seems fair to say that this view now enjoys

strong empirical support.

Motivated by this limitation, Fernandes and Phelan (2000) subsequently developed a

generalized formulation which is applicable to settings in which the agent's hidden type

is Markov.2 The main complication involved in this generalization is that when types are

serially dependent, the agent's continuation utility depends on his true type which is not

observable to the planner. As a result, providing correct incentives in a recursive manner

requires the planner to promise and deliver continuation utilities to all possible types that she

may be facing. This observation led Fernandes and Phelan to develop a recursive formulation

which tracks continuation utility pro�les�functions Ut(·) that return the agent's valuation

of the continuation contract as a function of what his true type might have been in the

previous period�as the endogenous state variable.

While Fernandes and Phelan's formulation was a conceptually important one, using it

for quantitative purposes proved to be challenging for computational reasons. The di�culty

1Well-behavedness is important. In general, it is always possible to use a bijection between Rn and R to
hide any history dependence. Doing so is not very useful however because the resulting formulation will be
ill-behaved, with discontinuous value functions and policy functions.

2See Doepke and Townsend (2006) and Zhang (2009) for further developments along this line.
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here comes from the need to track Ut(·) as a state variable, which implies that in order to

solve a model in which the agent's hidden type follows an N state Markov chain, one needs

to work with a Bellman equation with N continuous state variables and a set operator that

maps subsets of RN into subsets of RN (to compute the state space which is unknown in

advance). Thus, although the computations remain manageable for N = 2, they quickly

become infeasible as N is increased. This is problematic in many instances, as setting N = 2

severely restricts the cross sectional distribution of types to one concentrated at two values

and rules out multivariate processes such as those containing both persistent and transitory

components. As a result, many researchers interested in quantitative applications have

avoided this issue by using models with simple (i.i.d. or �xed) type processes or short (two

to three period) time horizons.

In this paper, we suggest a new way of ameliorating this computational di�culty. Our

main theoretical result is that if the agent's probability of transiting from state θ− to state

θ can be written as
∑K

k=1 pk(θ)wk(θ−), where pk is a probability density over θ and wk is

a weight on density pk that can depend on θ−, the mechanism design problem admits a

well-behaved recursive formulation with K continuous state variables regardless of N . This

formulation therefore achieves a dimensionality reduction relative to Fernandes and Phelan's

when K < N . We then show that this result makes it possible to formulate computationally

tractable models in which the agent's hidden type follows a process with both persistent and

transitory components, each of which can take many distinct values.

Our approach, however, does seem to be limited in terms of its ability to handle highly

persistent processes. In particular, numerical examples suggest that obtaining close ap-

proximations of an N = 15 state Markov chain which discretizes an AR(1) process with

autoregressive coe�cient ρ = 0.95 requires K ≥ 4. And while 4 dimensions is much better

than 15 dimensions, it is not good enough in many computational environments. It remains

to be seen whether if this will remain so in the future. For the time being, we simply point

out that, as long as persistence is not too high, it is possible to mitigate this problem by

making a modest change in the empirical de�nition of a model period (e.g., by changing it

from one year to �ve years).

An important and increasingly popular way of confronting the computational challenge

we address here is to use a dynamic �rst order approach (FOA), developed by Courty and

Li (2000), Abraham and Pavoni (2008), Kapicka (2010), Williams (2011), and Pavan, Segal,

and Toikka (2009), among others. Under this approach, one �rst solves a relaxed version of

the problem in which non-local incentive constraints are ignored, and then goes on to check

if the solution to the relaxed problem is indeed incentive compatible. To the extent that the

ex-post validation succeeds, this approach can be more e�cient than ours. This is especially
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true in settings with many highly persistent types; Farhi and Werning (2010) report success

in such a setting. One limitation of the FOA however is that general su�cient conditions

on model primitives that guarantee its success are currently unavailable. This means that

the ex-post validation must be carried out on faith and there is no clear guidance on how to

proceed when it fails. Our approach does not have this problem, and can therefore be used

as a fallback option if the FOA should fail. A second limitation of the FOA is that it is not

clear how one would apply it in settings with multi-dimensional types (e.g., the hidden type

contains persistent and transitory components). Our approach can handle at least a subset

of such environments, and in this respect has broader applicability. And it can be extended

to accommodate hidden actions as well (Fukushima and Waki, 2011a).

2 Problem Statement

Consider the following dynamic mechanism design problem, which subsumes versions of

several well-known setups as special cases. Examples are given at the end of the section.

There is a planner and an agent, and time �ows t = 0, 1, 2, .... In each period, the agent

draws a shock θt ∈ Θ and sends a report rt ∈ Θ to the planner. The planner then chooses an

outcome xt ∈ X given the agent's history of reports. We assume Θ is �nite with cardinality

N and X ⊂ RL is compact.

The shock process {θt}∞t=0 is �rst order Markov, and the probability of transiting from

θ− to θ is π(θ|θ−). Its initial distribution is π(·|θ−1), where θ−1 is a publicly known value.

As well, π(θ|θ−) > 0 for all θ and θ−. For t ≥ s ≥ 0 we write θts = (θs, ..., θt), θ
t = θt0, and

Pr(θts|θs−1) = π(θt|θt−1) · · · π(θs|θs−1).

We de�ne an allocation as a sequence x = {xt}∞t=0, xt : Θt+1 → X for each t, and let X

denote the set of all allocations.

If allocation x takes place, that is, if the outcome xt(θ
t) occurs after each shock history

θt, the agent obtains lifetime utility

U(x; θ−1) =
∞∑
t=0

∑
θt

βtu(xt(θ
t); θt) Pr(θt|θ−1)

where β ∈ (0, 1) and u : X × Θ → R has the property that each u(·; θ) is continuous. We

let V = [minu(X; Θ),maxu(X; Θ)]/(1 − β) denote the closed interval to which U always

belongs. The cost for the planner is

C(x; θ−1) =
∞∑
t=0

∑
θt

qtc(xt(θ
t)) Pr(θt|θ−1)
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where q ∈ (0, 1) and c : X → R is continuous.

For the most part we will assume that the environment is convex, meaning that X is

convex, c is convex, and each u(·; θ) is linear. It is often possible to obtain this property by a

suitable change of variables (see the examples below). More generally, it can be guaranteed

by introducing lotteries (following Prescott and Townsend, 1984).

The planner is placed in this environment with the ability to commit and with the

obligation to provide lifetime utility U0 to the agent. Her goal is to ful�ll this obligation in

a cost-minimizing way, respecting the agent's incentives.

To formulate the planner's problem, we invoke the revelation principle and say that

an allocation x is feasible if it satis�es two conditions. The �rst condition says that it is

optimal for the agent to report truthfully. Formally, de�ne a reporting strategy as a sequence

r = {rt}∞t=0, rt : Θt+1 → Θ for each t, and let R be the set of all reporting strategies. We

say that x is incentive compatible if

U(x; θ−1) ≥ U(x ◦ r; θ−1), ∀r ∈ R (1)

where x ◦ r = {xt ◦ rt}∞t=0, r
t = (r0, ..., rt). It is straightforward to check that the set of

incentive compatible allocations does not depend on θ−1.

The second condition says that the agent indeed gets lifetime utility U0:

U(x; θ−1) ≥ U0. (2)

We say that x satis�es promise keeping if this holds.

The planning problem given initial condition (θ−1, U0) is then to choose an allocation x

so as to minimize C(x; θ−1) subject to feasibility. We assume U0 is such that this problem

has a non-empty constraint set.

Example (Hidden Income). When L = 1, Θ ⊂ R, u(x; θ) = v(x + θ), and c(x) = x, the

model specializes to the hidden endowment model of Green (1987) and Thomas and Worrall

(1990). In this model, θ is the agent's hidden income and x is an additional income transfer;

thus the agent's consumption is x+ θ. A standard way of obtaining convexity is to assume

CARA utility v(c) = − exp(−γc) (γ > 0) and use the change of variable x̃ = − exp(−γx).

Example (Hidden Tastes). When L = 1, Θ ⊂ R++, u(x; θ) = θv(x), and c(x) = x, the

model specializes to a version of the Atkeson and Lucas (1992) hidden taste shock model.

Here, x is the agent's consumption and θ is a taste shock representing his urgency to consume,

say due to illness. With the change of variable x̃ = v(x), the environment becomes convex.
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Example (Hidden Skills). When L = 2, Θ ⊂ R++, u(x; θ) = v1(x1)− v2(x2/θ), and c(x) =

x2 − x1, the model specializes to a dynamic extension of Mirrlees (1971), versions of which

are used in a literature overviewed by Kocherlakota (2010). Here, x1 is consumption, x2 is

labor output, and θ is a hidden skill level. The idea is that if the agent exerts e�ort e, he

produces x2 = θe and incurs disutility v2(e) = v2(x2/θ). Convexity obtains when v2(e) = eγ

(γ ≥ 1) under the change of variables (x̃1, x̃2) = (v1(x1), v2(x2)).

3 Recursive Formulation

This section presents our recursive formulation of the planning problem. Our starting point

is the following version of the one-shot deviation principle. (All proofs are in the Appendix.)

Lemma 1. An allocation x is incentive compatible if and only if

u(xt(θ
t−1, θt); θt) + β

∞∑
s=t+1

∑
θst+1

βs−(t+1)u(xs(θ
t−1, θt, θ

s
t+1); θs) Pr(θst+1|θt)

≥ u(xt(θ
t−1, θ′t); θt) + β

∞∑
s=t+1

∑
θst+1

βs−(t+1)u(xs(θ
t−1, θ′t, θ

s
t+1); θs) Pr(θst+1|θt) (3)

for all t, θt−1, θt, and θ
′
t.

In the special case with i.i.d. shocks, the conditional probabilities in the second terms

of both sides of (3) are independent of the agent's true type θt. Green (1987), Spear and

Srivastava (1987), and Thomas and Worrall (1990) exploited this property and rewrote (3)

as

u(xt(θ
t−1, θt); θt) + βUt+1(θt−1, θt) ≥ u(xt(θ

t−1, θ′t); θt) + βUt+1(θt−1, θ′t)

where

Ut(θ
t−1) =

∞∑
s=t

∑
θst

βs−tu(xs(θ
t−1, θst ); θs) Pr(θst )

is the agent's continuation utility after history θt−1. They then used these two conditions to

rewrite the planning problem as a standard dynamic programming problem, taking Ut(θ
t−1)

as the state variable.

In the more general case where the shocks are not i.i.d., (3) needs to be written as:

u(xt(θ
t−1, θt); θt) + βUt+1(θt−1, θt; θt) ≥ u(xt(θ

t−1, θ′t); θt) + βUt+1(θt−1, θ′t; θt)
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where

Ut(θ
t−1; θ−) =

∞∑
s=t

∑
θst

βs−tu(xs(θ
t−1, θst ); θs) Pr(θst |θ−)

describes the agent's continuation utility pro�le�a function Ut(θ
t−1; ·) : Θ→ R that returns

the agent's continuation utility as a function of what his true type might have been in

the previous period. This means that if we are to follow the above approach, we must

track the N dimensional variable Ut(θ
t−1; ·). The reason for this is simple: When deciding

whether to misreport his type today, the agent compares the immediate gains from doing

so and the long term consequences. But unless the shocks are i.i.d., the agent's valuation

of the continuation allocation depends on his current type, which is not observable to the

planner. It follows that in order to correctly provide incentives, the planner must promise

and deliver continuation utilities to all possible types that she may be facing. Building on

this observation, Fernandes and Phelan (2000) developed a recursive formulation which takes

Ut(θ
t−1; ·) as the endogenous state variable.
While Fernandes and Phelan's approach was a conceptually straightforward response to

the situation just described, it is not a convenient one for computations as it leads to a

curse of dimensionality which makes the formulation essentially unusable when N is large.

In what follows we describe how this limitation may be overcome when the shock process

is taken to have a special structure. What we show is that by exploiting that structure, it

is possible to track the continuation utility pro�le Ut(θ
t−1; ·) more e�ciently and thereby

obtain a recursive formulation of the problem with a smaller state space.

De�nition. The transition kernel π has an order K mixture representation if we can write:

π(θ|θ−) =
K∑
k=1

pk(θ)wk(θ−), (4)

where K ∈ {1, ..., N} and (p, w) : Θ → RK
+ × RK

+ satis�es
∑

θ pk(θ) = 1 for each k and∑
k wk(θ−) = 1 for each θ−. Let ΠK denote the set of all transition kernels which have an

order K mixture representation.

In words, (4) says that the conditional densities over θ, π(·|θ−), can be represented as

mixtures of K densities {pk}Kk=1 where the mixture proportions {wk}Kk=1 encapsulate their

dependence on θ−. Equivalently, it says that the transition matrix Π is the product of an

N × K matrix (with elements w) and a K × N matrix (with elements p), so that Π is of

rank K. One can always write π in this way with K = N ,3 but it is also true that there is

3Let pk(θ) = π(θ|k) and let wk(θ−) be the indicator of k = θ−. Our recursive formulation reduces to
Fernandes and Phelan's under this trivial representation.
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a non-trivial class of π's for which one can do the same for K < N , and our interest in this

representation stems from the latter fact.

Let us now imagine, given (4), that in each period the agent transits between states via

a �ctitious �interim state� k: he goes from θ− to k with probability wk(θ−) and then from k

to θ with probability pk(θ). Then if we look at the vector of continuation utilities starting

from the interim states:

at(θ
t−1) =

∑
θt

u(xt(θ
t); θt) + β

∞∑
s=t+1

∑
θst+1

βs−(t+1)u(xs(θ
t, θst+1); θs) Pr(θst+1|θt)

 p(θt) (5)

we can see that by the law of iterated expectations:

Ut(θ
t−1; ·) =

K∑
k=1

akt(θ
t−1)wk(·). (6)

Hence the K-dimensional variable at(θ
t−1) carries all relevant information contained in the

N -dimensional Ut(θ
t−1; ·). Our idea, naturally suggested by this and K ≤ N , is to use

at(θ
t−1) instead of Ut(θ

t−1; ·) as our record-keeping device.

This leads us to seek a recursive formulation of the planning problem that takes at as

the endogenous state variable. Toward this end, let us abuse notation slightly and write

at(θ
t−1;x) to describe the mapping from x to at(θ

t−1) de�ned by (5). Let us also write

a0(x) = a0(θ−1;x), as this is independent of θ−1. Then consider the following minimization

problem indexed by the initial condition (θ−1, a0) ∈ Θ× V K :

J∗(θ−1, a0) = inf
x
C(x; θ−1)

subject to

U(x; θ−1) ≥ U(x ◦ r; θ−1), ∀r ∈ R (7)

a0(x) = a0. (8)

We call this the auxiliary planning problem starting from (θ−1, a0), and let A∗ ⊂ V K denote

the set of a0's for which its constraint set is non-empty (note that this set is the same for all

θ−1). It is straightforward to check that if

a∗0 ∈ arg min
a0∈A∗

J∗(θ−1, a0) s.t. a0 · w(θ−1) ≥ U0, (9)

then a solution to the auxiliary planning problem starting from (θ−1, a
∗
0) is a solution to the
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planning problem starting from (θ−1, U0).

The reason for introducing the auxiliary planning problem is that it has a stationary

recursive structure which the original planning problem does not.

Lemma 2. An allocation x satis�es the constraints of the auxiliary planning problem if and

only if there exists a = {at}∞t=0, at : Θt → A∗, such that (x, a) satis�es

u(xt(θ
t−1, θt); θt) + βat+1(θt−1, θt) · w(θt) ≥ u(xt(θ

t−1, θ′t); θt) + βat+1(θt−1, θ′t) · w(θt) (10)

at(θ
t−1) =

∑
θt

{
u(xt(θ

t); θt) + βat+1(θt) · w(θt)
}
p(θt) (11)

for all t, θt, θ′t and a0(θ−1) = a0.

The upshot of this lemma is that the auxiliary planning problem is equivalent to a

problem in which one minimizes C(x; θ−1) by choice of (x, a) subject to the constraints (10),

(11), and a0(θ−1) = a0. It is easy to see that this rewritten problem is a standard dynamic

programming problem with state space Θ× A∗.
To solve this problem using recursive methods, we �rst need to know what the set A∗ is.

For this we de�ne an operator B, which maps A ⊂ V K into B(A) ⊂ V K de�ned as:

B(A) = {a ∈ V K |∃(x, a+) ∈ F (a;A)} (12)

where F (a;A) is the set of function pairs (x, a+) : Θ→ X × A satisfying:

u(x(θ); θ) + βa+(θ) · w(θ) ≥ u(x(θ′); θ) + βa+(θ′) · w(θ), ∀θ, θ′ ∈ Θ

a =
∑
θ

{
u(x(θ); θ) + βa+(θ) · w(θ)

}
p(θ).

Proposition 3. A∗ is a non-empty and compact set, and is the largest �xed point of B. If

A0 ⊂ V K is a compact set satisfying A0 ⊃ B(A0) ⊃ A∗ (one example being A0 = V K) then

Bn(A0) is decreasing in n and ∩∞n=0B
n(A0) = A∗. If A0 ⊂ V K satis�es A∗ ⊃ B(A0) ⊃ A0

(one example being A0 = {a0(x̄)} where x̄ is a constant allocation), then Bn(A0) is increasing

in n and cl(∪∞n=0B
n(A0)) = A∗. If the environment is convex, B maps convex sets into convex

sets and A∗ is convex.

The proof of this result is mostly an application of arguments due to Abreu, Pearce,

and Stacchetti (1990). However the third part�which ensures convergence of Bn(A0) to A∗

from below�is not, and as far as we know there is no general counterpart of this in the

context of repeated games. We use this part later in section 4 in developing our numerical

implementation.
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Give this, we can now formulate and solve a Bellman equation for the problem. De�ne

an operator T which maps J : Θ× A∗ → R into TJ : Θ× A∗ → R, de�ned as:

TJ(θ−, a) = inf
(x,a+)∈F (a;A∗)

∑
θ

{
c(x(θ)) + qJ(θ, a+(θ))

}
π(θ|θ−). (13)

Let ||·|| denote the supremum norm on the space of bounded real valued functions on Θ×A∗.
The following standard properties hold:

Proposition 4. J∗ is a bounded lower semicontinuous function, and ||T nJ − J∗|| → 0 as

n→∞ for any bounded J : Θ×A∗ → R. There exists a function g∗ : Θ×A∗ → (X ×A∗)Θ

which attains the in�mum on the right hand side of (13) when J = J∗, and for any such

g∗ the allocation x∗ de�ned recursively by (x∗t (θ
t), a∗t+1(θt)) = g∗(θt−1, a

∗
t (θ

t−1))(θt) solves the

auxiliary planning problem starting from (θ−1, a
∗
0(θ−1)). If the environment is convex, each

J∗(θ−, ·) is convex.

In summary, we obtain the following algorithm for solving the planner's problem: First,

use Proposition 3 to iteratively compute A∗. Then solve the Bellman equation in Proposition

4 using that A∗. Finally, solve (9) to get a∗0 and roll out x
∗ from there using the policy function

g∗. This procedure is similar to one suggested by Fernandes and Phelan (2000), but better

suited for numerical computations thanks to the smaller state space (and, to a lesser extent,

the smaller number of control variables).

This algorithm is readily adapted to �nite, t̄-period settings (t = 0, ..., t̄−1) as follows: (i)

compute a sequence of sets {A∗t}t̄t=0 (A
∗
t ⊂ RK), as A∗t̄ = {0} and A∗t = B(A∗t+1); (ii) compute

a sequence of value functions {J∗t }t̄t=0 (J∗t : Θ× A∗t → R), as J∗t̄+1 ≡ 0 and J∗t = TJ∗t+1; (iii)

generate x∗ using the policy functions {g∗t }t̄−1
t=0 (g

∗
t : Θ×A∗t → (X ×A∗t+1)Θ) which solve the

minimization problems in the de�nition of TJ∗t+1. Of course we can allow u, c, and π to be

time-dependent in this case and proceed as above using the time-dependent analogs of B

and T .

4 Numerical Implementation

We next describe a procedure for numerically implementing our scheme on a computer.

The procedure works for general convex environments, and is designed with an emphasis on

robustness. We limit our discussion to the in�nite horizon case; adapting it to settings with

�nite horizons is straightforward.

The �rst step is to compute a polytope Â∗ ⊂ RK that approximates A∗ ⊂ RK . A

procedure for this is the following, which adapts Judd, Yeltekin, and Conklin's (2003) inner
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Algorithm 1 : Solve the planning problem.

I. Compute Â∗:

1. Compute ÂI (inner approximation of A∗).

(a) Set Â
(0)
I = {a0(x̄)} where x̄ is a constant allocation.

(b) For n ≥ 0, let Â
(n+1)
I = B̂I(Â

(n)
I ).

(c) If Â
(n+1)
I and Â

(n)
I are su�ciently close, set ÂI = Â

(n+1)
I and go to step 2. Other-

wise, set n n+ 1 and go back to part (b).

2. Compute ÂO (outer approximation of A∗).

(a) Set Â
(0)
O = V K .

(b) For n ≥ 0, let Â
(n+1)
O = B̂O(Â

(n)
O ).

(c) If Â
(n+1)
O and Â

(n)
O are su�ciently close, set ÂO = Â

(n+1)
O and go to step 3. Other-

wise, set n n+ 1 and go back to part (b).

3. If ÂI is close enough to ÂO, set Â
∗ = ÂI and stop. Otherwise, enlarge H and retry.

II. Compute (Ĵ∗, ĝ∗) via value iteration and compute â∗0 using (9) with Ĵ∗ replacing J∗.

ray and outer hyperplane approximation methods to our setting.

First, let H be a �nite collection of vectors h ∈ RK satisfying 0 ∈ co(H). Then de�ne

two operators B̂I and B̂O which map polytopes Â ⊂ RK into polytopes

B̂I(Â) = co({a0(x̄) + hl(h, Â)}h∈H)

B̂O(Â) = {a ∈ RK |h · a ≥ z(h, Â), ∀h ∈ H}

where l(h, Â) and z(h, Â) are de�ned in terms of linear programs:

l(h, Â) = max{l ∈ R+ : a0(x̄) + hl ∈ B(Â)}

z(h, Â) = min{h · a : a ∈ B(Â)}

These operators are monotone (Â ⊂ Â′ =⇒ B̂I(Â) ⊂ B̂I(Â
′) and B̂O(Â) ⊂ B̂O(Â′)) and

approximate B from inside and outside in the sense that B̂I(Â) ⊂ B(Â) ⊂ B̂O(Â) for any

Â. As well, a0(x̄) ∈ B̂I({a0(x̄)}).
Part I of Algorithm 1 describes how to compute Â∗ using these operators. It follows from

Proposition 3 and the above properties of B̂I and B̂O that: (i) the iterations in steps 1 and

2 converge monotonically; (ii) Â∗ = ÂI ⊂ A∗ ⊂ ÂO; and (iii) Â∗ ⊂ B(Â∗). It follows from

11



(ii) that step 3 of the algorithm provides an accuracy check with error bounds. Property

(iii) ensures that the dynamic programming part below does not involve optimizations over

empty constraint sets.

The next step, stated as Part II of Algorithm 1, is to solve the Bellman equation and

obtain a numerical approximation of (J∗, g∗, a∗0), denoted (Ĵ∗, ĝ∗, â∗0), using Â∗ as the state

space. The only obvious approach for this part is to use value function iteration, interpolating

the candidate value function in each step.

While this step is more or less standard, there are two important details. The �rst

is how to construct a grid on the computed state space Â∗. An approach here is to �rst

compute the half spaces whose intersection equals Â∗ (for example using Barber, Dobkin,

and Huhdanpaa's (1996) Qhull package) and then use Smith's (1984) �hit-and-run� procedure

to generate pseudo random grid points on Â∗ that are asymptotically uniformly distributed.

The second detail concerns which interpolation scheme to use. This is a non-trivial issue

because the non-rectangularity of the domain Â∗ and the potential non-smoothness of the

value function J∗ can cause many standard methods to behave poorly, with undesirable

consequences on numerical stability and solution quality (cf. Judd, 1998, p. 438). One option

here is to use an approach described in Fukushima and Waki (2011b) which is designed to

handle problems of this sort in a robust manner.

5 An Illustration

Let us �nally use a simple example to illustrate the potential of our approach. We focus here

on highlighting some key ideas and limitations; for full-blown quantitative applications, see

Fukushima (2010) and Waki (2011).

We consider an optimal lending problem with hidden income and CARA utility v(c) =

− exp(−γc) as in the �rst example from section 2. Log income yt follows a �nite state version

of an ARMA(1,1) process as in Storesletten, Telmer, and Yaron (2004):

yt = κt + τt (14)

κt = ρκt−1 + εt (15)

where {τt}∞t=0 and {εt}∞t=0 are independent i.i.d. processes. Thus yt is a function of a two-

dimensional type vector θt = (κt, τt) whose persistent component κt follows an Nκ state

Markov process with transition probabilities µ(κ|κ−) and whose transitory component τt

is an N τ state i.i.d. process with density φ(τ). The hidden type θt therefore follows an

N = Nκ×N τ (≥ 4) state Markov chain, which makes the problem challenging to solve using

12



Figure 1: Example of a persistent shock process with large N and K = 2.

Fernandes and Phelan's (2000) N dimensional recursive formulation. In the following we

show how our results can help mitigate this problem.

We begin by pointing out that we can always achieve a dimensionality reduction from

N to Nκ using our approach. To see this, observe that the transition probabilities for the

hidden type θ = (κ, τ) can be written:

π(κ, τ |κ−, τ−) = µ(κ|κ−)φ(τ)

and that this �ts the format (4) with K = Nκ, pk(κ, τ) = µ(κ|k)φ(τ), and wk(κ−, τ−) equal

to the indicator function of k = κ−. The type process therefore has an order Nκ mixture

representation. This alone eliminates two or more continuous state variables.

Reducing the dimensionality below Nκ is not always possible but it is in some special

cases. Figure 1 illustrates the general idea using an example where K = 2 � Nκ. Here, µ

has the structure

µ(κ|κ−) = p1(κ)w(κ−) + p2(κ)(1− w(κ−)),

and the �gure depicts the densities pk (k = 1, 2) (left panel) and the weight w (right panel).

The κ and κ− values on the horizontal axes are allowed to take a large number of values Nκ.

To see how this works, �rst suppose the agent has the lowest possible value of κ− today, in

which case he draws his κ tomorrow from p1 with certainty. Then as his κ− is increased, his

next-period draw of κ comes from p2 with higher and higher probability, until the highest

possible value is reached and his draw comes exclusively from p2. Using this information it

is not too di�cult to visualize how the conditional density over κ, µ(·|κ−), varies with κ−,

and see from there that the process exhibits positive autocorrelation and mean reversion like

a stationary AR(1).
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To quantify how far this idea can take us, we next undertake a numerical exercise. We

start with a �target� process for {κt}, speci�ed as a 15 state Tauchen (1986) discretization

of (15) assuming ε ∼ N (0, σ2
ε ), and let µ∗ denote its transition kernel and µ̄∗ its invariant

distribution. We set ρ = 0.95 and σ2
ε = 0.132 at an annual frequency following Storesletten,

Telmer, and Yaron (2004). We then ask how well we can approximate this target process

using µK ∈ ΠK for small K. Speci�cally, we choose our approximating process µK so that:

µK ∈ arg min
µ∈ΠK

∑
κ−

{∑
κ

log

(
µ∗(κ|κ−)

µ(κ|κ−)

)
µ∗(κ|κ−)

}
µ̄∗(κ−), (16)

where the objective function is the Kullback-Leibler divergence adapted to the present

Markov setting.

Figure 2 compares µ∗ and {µK}4
K=1 along several dimensions for a quinquennial model

(ρ = 0.955 ≈ 0.77, σ2
ε = 0.132×

∑5
i=1 0.952(i−1) ≈ 0.262). The top four panels report popula-

tion moments of κt. Panel (a) depicts the density functions of the stationary distributions,

which all turn out to be nearly identical. Panel (b) depicts the conditional means E[κ|κ−]

as a function of κ−. Here we can see how the lack of persistence with µ1 (i.i.d. shocks) is

remedied as we increase K; as one might expect from (16), each µK attains a better match

at κ− values with high probability under the stationary distribution (cf. panel (a)). These

properties are re�ected in the autocorrelations, depicted in panel (c). Panel (d) depicts the

conditional variances Var[κ|κ−] as functions of κ−. The discrepancy again gets smaller as we

increase K, although the improvement is less uniform. The latter e�ect arises because the

conditional variances tend to increase at those κ− values that lie between the peaks of the

densities {pk}Kk=1.

The bottom four panels of �gure 2 compare µ∗ and the µK 's in terms of the sample paths

generated by identical forcing variables.4 The discrepancy between the paths from µ∗ and µ1

here is quite evident. The path from µ2 tracks that from µ∗ much closer, although it shows

a tendency to overshoot, re�ecting its excessive conditional variance (cf. panel (d)). The

discrepancy is further attenuated with µ3 and µ4, where the approximation quality looks, at

least to our eyes, quite good.

Figure 3 reproduces �gure 2 for the annual model (ρ = 0.95, σ2
ε = 0.132). Comparing

�gures 2 and 3, we can see that although the qualitative characteristics remain similar,

the higher persistence here makes it harder to obtain close approximations with small K.

To understand this result, let us refer back to �gure 1, which is essentially a schematic

4Speci�cally, we let {Zt} be an i.i.d. draw from U [0, 1], set κ1 to the value of the inverse c.d.f. of µ̄ at Z1,
and construct subsequent κt's recursively by setting κt equal to the value of the inverse c.d.f. of µ(·|κt−1) at
Zt.
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Figure 2: Statistical comparison of µ∗ and µK for quinquennial model.
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Figure 3: Statistical comparison of µ∗ and µK for annual model.
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representation of µ2. The �gure reveals that in order to obtain high persistence, we need p1

and p2 to be su�ciently distinct and the graph of w to be su�ciently steep. But if we carry

these properties to extremes, the stationary distribution will no longer have the unimodal

form that µ̄∗ does. The insu�cient persistence of µ2 follows from this tension and the fact

that the approximation method (16) tries to closely match the stationary distribution (cf.

panel (a) of �gures 2 and 3).

So far we have focused on the statistical properties of {κt} under each µK and how they

compare with those under µ∗. These comparisons provide information on how �exible each

ΠK is in a statistical sense, that is, what kinds of persistence properties can be captured

using processes with order K (< N) mixture representations.

A di�erent but equally interesting question however is this: Suppose we knew µ∗ is the

�true� transition kernel for {κt} but we computed the optimal mechanism under µK . Would

the computed mechanism be �close� to the optimal mechanism under µ∗? We unfortunately

cannot provide a complete answer to this question as it requires solving the mechanism

design problem under µ∗, which is a recursive problem with a 15 dimensional state space.

We can, however, provide a partial answer by examining how close the solutions under µ∗

and each µK are in a simpli�ed version of the model with a short time horizon (which can

be solved sequentially). We pursue this next.

We thus consider a two period version of the model which we interpret as standing

for a person's 40 year working career. Each period then stands for 20 years, so we set

β = q = 0.9520 ≈ 0.36, ρ = 0.9520 ≈ 0.36, and σ2
ε = 0.132 ×

∑20
i=1 0.952(i−1) ≈ 0.392. We

normalize U0 = −1 and set the agent's absolute risk aversion coe�cient to γ = 0.5; the

implied relative risk aversion is about 1 on average for the range of consumption values that

we observe. We abstract from the transitory shocks τt. We then solve the mechanism design

problem for each µ ∈ {µ∗, µ1, ..., µ4} and compare the optimal transfers from the planner to

the agent which we denote z∗t (θ
t;µ).

The �rst four columns of table 1 summarize our main �ndings. The �rst two rows report

the maximum errors in each z∗t :

max
θt
|z∗t (θt;µK)− z∗t (θt;µ∗)|,

expressed as fractions of average income. It turns out that the biggest errors here occur with

low probability, and as a result the average errors,∑
θt

|z∗t (θt;µK)− z∗t (θt;µ∗)|Pr(θt),
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ρ = 0.95 annually ρ = 0.99 annually
K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4

max z1 error 0.1632 0.0951 0.0358 0.0078 1.3299 1.1756 1.0355 0.8791
max z2 error 0.3369 0.1894 0.0692 0.0151 1.4453 1.2396 0.9974 0.7730
avg z1 error 0.0320 0.0041 0.0007 0.0003 0.1171 0.0444 0.0219 0.0150
avg z2 error 0.0809 0.0104 0.0016 0.0008 0.2972 0.0874 0.0385 0.0267
cost error 0.0054 0.0009 0.0001 0.0000 0.0539 0.0124 0.0069 0.0039

Table 1: Comparison of optimal mechanisms under µ∗ and µK .

reported in the next two rows as fractions of average income, are up to several orders of

magnitude smaller. As we can see, these errors drop rapidly as we increase K and reach

levels that appear small enough for many purposes at K = 3 or 4. Similar properties hold

for errors in the optimal cost:∣∣∣∣∣
2∑
t=1

∑
θt

qtz∗t (θ
t;µK) Pr(θt)−

2∑
t=1

∑
θt

qtz∗t (θ
t;µ∗) Pr(θt)

∣∣∣∣∣ ,
reported in the �nal row as fractions of average present value income (with q discounting).

Overall, we �nd these results encouraging.

We observed previously that approximating µ∗ by µK (with small K) appears challenging

when κ is highly persistent. In the last four columns of table 1 we revisit this point by showing

how the results change if we increase ρ from 0.95 to 0.99 in annual terms. As we can see,

there is indeed a signi�cant increase in the errors compared to the baseline case.

Finally, we tried solving the same problem using the �rst order approach. We found the

approach to be valid for the ρ = 0.95 case. For the ρ = 0.99 case it was invalid, but the

solution to the relaxed problem turned out to be close to the true solution (closer than with

K = 4). These results support our tentative view that the �rst order approach may be more

e�ective than ours when the hidden type is one dimensional and highly persistent.

6 Conclusion

At an abstract level, the essence of our �nding is the observation that one can e�ciently

track conditional expectations over time by carefully choosing the timing convention if the

exogenous forcing variables follow a Markov process with a low-order mixture representation.

We have elaborated on how to exploit this fact for computational purposes in the context

of dynamic mechanism design. This interpretation of our analysis suggests that a similar

approach may prove useful in other contexts as a dimensionality reduction technique when
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there is a need to track a conditional expectation as a state variable.

A Proofs

This section collects the proofs. Many of the arguments are standard but we include them

for completeness.

A.1 Proof of Lemma 1

First suppose (3) did not hold for some t, θt−1, θt, θ
′
t. Then if we de�ne a reporting strategy

r ∈ R by rt(θ
t) = θ′t and rs(θ

s) = θs for all (s, θs) 6= (t, θt) we have

U(x; θ−1)− U(x ◦ r; θ−1) = βt[(L.H.S. of (3))− (R.H.S. of (3))] Pr(θt|θ−1) < 0,

which violates incentive compatibility.

Next suppose x satis�es (3) and let r ∈ R be an arbitrary reporting strategy. To show

that U(x; θ−1) ≥ U(x ◦ r; θ−1), let Wt(x ◦ r; θ−1) denote the utility the agent gets from

following r for the �rst t periods and then reverting back to truth telling:

Wt(x ◦ r; θ−1) =
t∑

s=0

∑
θs

βsu(xs(r
s(θs)); θs) Pr(θs|θ−1)

+
∞∑

s=t+1

∑
θs

βsu(xs(r
t(θt), θst+1); θs) Pr(θs|θ−1).

We claim that U(x; θ−1) ≥ W0(x ◦ r; θ−1) ≥ · · · ≥ Wt(x ◦ r; θ−1) for any t and that Wt(x ◦
r; θ−1) → U(x ◦ r; θ−1) as t → ∞. The �rst statement follows from (3) and mathematical

induction. The second statement follows from:

|U(x ◦ r; θ−1)−Wt(x ◦ r; θ−1)| ≤ βt+1 × length(V )→ 0, as t→∞.

The result follows.

A.2 Proof of Lemma 2

It is enough to show that an allocation x satis�es the constraints in the auxiliary planning

problem starting from (θ−1, a0) if and only if there is a sequence a = {at}∞t=0, at : Θt → A∗,

such that (x, a) satis�es the constraints in the statement of the lemma.
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First suppose x satis�es the constraints in the auxiliary planning problem starting from

(θ−1, a0). De�ne a by (5). Condition (10) then follows from the incentive compatibility of

x, Lemma 1, and (6). Condition (8) follows from (5) and (6). Finally, at+1(θt) ∈ A∗ follows
from the incentive compatibility of the continuation allocation x|θt := {xt+j+1(θt, ·)}j≥0 and

at+1(θt) = a0(x|θt).
Next suppose (x, a) satis�es the given conditions. From (8) it follows that

at(θ
t−1) =

∑
θt

{
u(xt(θ

t); θt) + βat+1(θt) · w(θt)
}
p(θt).

Iterating forward on this and using the fact that {at}∞t=0 is a bounded sequence, we can see

that (x, a) satis�es (5). It follows from this and a0(θ−1) = a0 that x satis�es (8). As well,

(6), (10), and Lemma 1 together imply (7).

A.3 Proof of Proposition 3

The following lemmas are analogous to those in Abreu, Pearce, and Stacchetti (1990).

Lemma 5. If A ⊂ V K satis�es A ⊂ B(A), then B(A) ⊂ A∗.

Proof. Suppose A satis�es the hypotheses, and let a ∈ B(A). Using this, we can roll out an

allocation x as follows. First, for period 0, use a ∈ B(A) to construct (x0(·), a1(·)) ∈ F (a;A).

Note that a1(θ0) ∈ A ⊂ B(A) for all θ0. Then, for periods t ≥ 1 and given histories

θt−1, proceed inductively by using at(θ
t−1) ∈ B(A) to construct (xt(θ

t−1, ·), at+1(θt−1, ·)) ∈
F (at(θ

t−1);A).

To �nish the proof, observe that (x, a) thus constructed satis�es conditions in Lemma 2,

with A∗ replaced by A. The second half of the proof goes through, which veri�es that x is

incentive compatible and satis�es a = a0(x). It follows that a ∈ A∗.

Lemma 6. B(A∗) = A∗.

Proof. Given Lemma 5, it is enough to show that A∗ ⊂ B(A∗). So let a ∈ A∗ and let x be an

incentive compatible allocation satisfying a = a0(x). De�ne a1 : Θ→ A by a1(θ0) = a0(x|θ0),
all θ0. It is then easy to see that (x0(·), a1(·)) ∈ F (a;A∗), implying a ∈ B(A∗).

Lemma 7. If A ⊂ A′ ⊂ V K, then B(A) ⊂ B(A′).

Proof. Immediate from the de�nition of B.

Lemma 8. If A is compact, so is B(A).
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Proof. Suppose A is compact. Clearly B(A) ⊂ V K is bounded. To see that it is closed, pick a

convergent sequence {an}∞n=1 ⊂ B(A) and let a denote its limit. Then for each n, there exists

(xn, a
+
n ) ∈ F (an;A). Because {xn, a+

n }∞n=1 can be viewed as sequence of �nite-dimensional

vectors in the compact set XN ×AN , it has a convergent subsequence whose limit we denote

by (x, a+). Using continuity and the closedness of A, we can see that (x, a+) ∈ F (a;A),

implying a ∈ B(A).

Part 1. To see that A∗ is non-empty, consider a constant allocation x̄ which repeats

x̄ ∈ X. Its constancy implies incentive compatibility, and a0(x̄) ∈ V K . Hence a0(x̄) ∈ A∗.
Next, we verify the compactness of A∗. Boundedness follows from A∗ ⊂ V K . To prove

closedness, note that because cl(A∗) is compact, so is B(cl(A∗)) by Lemma 8. As well,

A∗ = B(A∗) ⊂ B(cl(A∗)) by Lemmas 6 and 7. Combining, we have cl(A∗) ⊂ B(cl(A∗)).

Lemma 5 then implies cl(A∗) ⊂ A∗, which proves the claim.

Part 2. Suppose V K ⊃ A0 ⊃ B(A0) ⊃ A∗ and let An = Bn(A0) for each n = 1, 2, .....

Using Lemmas 7 and 8, we can see that An ↓ ∩∞n=0An =: A∞ and that each An as well

as A∞ is compact. By Lemmas 6 and 7, A∗ ⊂ A∞. We show A∞ ⊂ A∗ by verifying

A∞ ⊂ B(A∞) (cf. Lemma 5). So let a ∈ A∞. Then because A∞ ⊂ B(An) ⊂ V K for each n,

we can construct a sequence of function pairs {xn, a+
n }∞n=0 such that for each n there holds

(xn, a
+
n ) ∈ F (a;An). As in the proof of Lemma 8, we can pick a convergent subsequence and

let (x, a+) denote the limit. Because each a+
n (θ) ∈ An and {An}∞n=0 is a sequence of compact

sets converging down to the compact set A∞, we have that a
+(θ) ∈ A∞ for each θ. From

this and continuity it follows that (x, a+) ∈ F (a;A∞). Hence a ∈ B(A∞).

Now consider setting A0 = V K . Compactness of A0 is evident. The set inclusion A∗ ⊂
B(A0) follows from A∗ ⊂ A0 and Lemmas 6 and 7. To see that B(A0) ⊂ A0, let a ∈ B(A0)

and let (x, a+) ∈ F (a;A0). We then have

a =
∑
θ

{
u(x(θ); θ) + βa+(θ) · w(θ)

}
p(θ) ∈ V K = A0.

Part 3. Suppose A0 ⊂ B(A0) ⊂ A∗. By Lemmas 6 and 7 and compactness of A∗, Bn(A0)

is increasing in n and satis�es cl(∪∞n=0B
n(A0)) ⊂ A∗.

To prove A∗ ⊂ cl(∪∞n=0B
n(A0)), pick any a ∈ A∗. We will construct a sequence in

∪∞n=0B
n(A0) that converges to a. For this, let a′ ∈ A0(⊂ A∗). By the de�nition of A∗ there

exist incentive compatible allocations x and x′ such that a = a0(x) and a′ = a0(x′). Then

for each n ≥ 1, do the following. First let xn = {xnt }∞t=0 be an allocation constructed by

truncating x after n periods and then appending x′. Thus for t > n:

(xn0 (θ0), ..., xnt (θt)) = (x0(θ0), ..., xn(θn), x′0(θn+1
n+1), ..., x′t−n−1(θtn+1)). (17)
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Next let rn = {rnt }∞t=0 be an optimal reporting strategy for the agent given xn (i.e., one that

maximizes U(xn ◦ rn; θ−1)). Note that we can take rnt for t > n to be truth-telling, thanks

to the incentive compatibility of x′ and (17). Then let x̂n = xn ◦ rn. By construction, x̂n is

incentive compatible, a0(x̂n) ≥ a0(xn), and an+1(θn; x̂n) = a′ for all θn.

We next verify a0(x̂n) ∈ ∪∞n=0B
n(A0) for all n. For this, note that for each t and θt−1:

at(θ
t−1; x̂n) =

∑
θt

{
u(x̂nt (θt); θt) + βat+1(θt; x̂n) · w(θt)

}
p(θt), (18)

and by the incentive compatibility of x̂n:

u(x̂nt (θt); θt) + βat+1(θt; x̂n) · w(θt)

≥ u(x̂nt (θt−1, θ′t); θt) + βat+1(θt−1, θ′t; x̂
n) · w(θt), ∀(θt, θ′t) ∈ Θ×Θ. (19)

Using (18) and (19) at t = n and an+1(θn; x̂n) = a′, we obtain an(θn−1; x̂n) ∈ B({a′})
for all θn−1. From here we can use induction on (18) and (19) for t = n − 1, ..., 0 to

get a0(x̂n) ∈ Bn+1({a′}). Lemma 7 and the fact that Bn(A0) is increasing in n imply

Bn+1({a′}) ⊂ Bn+1(A0) ⊂ ∪∞n=0B
n(A0).

To verify that a0(x̂n) → a as n → ∞, we pick an arbitrary subsequence {a0(x̂n
′
)}∞n′=1

and show that it has a further subsequence {a0(x̂n
′′
)}∞n′′=1 that converges to a. Toward this

end, note that because each rn
′
t belongs to a �nite set (being a mapping from a �nite set

to a �nite set) there is subindex n′′ along which rn
′′
converges to some r = {rt}∞t=0 in the

sense that, for all t, rn
′′
t = rt for large n

′′. Also for each t we have xn
′′
t = xt for n

′′ ≥ t. This

together with the boundedness of u implies a0(x̂n
′′
) = a0(xn

′′ ◦ rn′′)→ a0(x ◦ r). Combining
this with a0(x̂n

′′
) ≥ a0(xn

′′
) and a0(xn

′′
) → a, we obtain a0(x ◦ r) ≥ a. But the incentive

compatibility of x implies a0(x ◦ r) ≤ a0(x) = a, so a0(x ◦ r) = a. The conclusion follows.

Now let x̄ be a constant allocation which repeats x̄ ∈ X and let A0 = {a0(x̄)}. We

have A0 ⊂ A∗ from the incentive compatibility of x̄. From this and Lemmas 6 and 7 we

get B(A0) ⊂ A∗. To see that A0 ⊂ B(A0), note that the constant function pair (x, a+) ≡
(x̄, a0(x̄)) satis�es (x, a+) ∈ F (a0(x̄);A0) thanks to constancy and

a0(x̄) =
∑
θ

{u(x̄; θ) + βa0(x̄) · w(θ)} p(θ).

Part 4. If the environment is convex, B maps convex sets into convex sets. Convexity of

A∗ then follows from the convexity of V K and Bn(V K) ↓ A∗, as veri�ed above.
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A.4 Proof of Proposition 4

From Lemma 2 we know that the auxiliary planning problem is equivalent to a standard

dynamic programming problem. Standard arguments then imply that J∗ is a �xed point of

T , and that if g∗ : Θ×A∗ → (X×A∗)Θ attains the in�mum on the right hand side of (13) when

J = J∗ then an allocation x de�ned recursively by (x∗t (θ
t), a∗t+1(θt)) = g∗(θt−1, a

∗
t (θ

t−1))(θt)

solves the auxiliary planning problem (cf. Propositions 9.8 and 9.12 of Bertsekas and Shreve

(1996)).

Boundedness of J∗ follows from min c(X)/(1 − q) ≤ J∗ ≤ max c(X)/(1 − q). It follows
from Blackwell's theorem that T is a monotone contraction on the space of bounded functions

J : Θ× A∗ → R. Thus ||T nJ − J∗|| → 0 for any such J .

We go on to prove that J∗ is lower semicontinuous and that the function g∗ exists. First

identify the set of functions (X × A∗)Θ with XN × A∗N , and note that F (·;A∗) : A∗ ⇒

XN × A∗N is nonempty-valued (by A∗ = B(A∗)), compact-valued (by the continuity of the

constraints and the compactness of XN×A∗N), and upper hemicontinuous (by the continuity

of the constraints). Hence, if J is lower semicontinuous, so is TJ (cf. Lemma 17.30 of

Aliprantis and Border (2006)). Now consider the constant function J∗ ≡ min c(X)/(1− q).
Then by the de�nition of T , TJ∗ ≥ J∗. Because T is monotone and ||T nJ∗ − J∗|| →
0, it follows that J∗ is the pointwise supremum of {T nJ∗}∞n=1. Since each T nJ∗ is lower

semicontinuous, it follows that J∗ is lower semicontinuous. The existence of g∗ follows from

this and the fact that each F (a;A∗) is non-empty and compact.

Finally, suppose the environment is convex. Fix θ−1 and pick a
(i)
0 ∈ A∗ for i ∈ {1, 2} and

λ ∈ (0, 1). From the above, we can construct x∗(i) that solves the auxiliary planning problem

starting from (θ−1, a
(i)
0 ), i ∈ {1, 2}. Since λx∗(1) + (1 − λ)x∗(2) is feasible in the problem

starting from (θ−1, λa
(1)
0 + (1− λ)a

(2)
0 ), it follows that

J∗(θ−1, λa
(1)
0 + (1− λ)a

(2)
0 ) ≤ C(λx∗(1) + (1− λ)x∗(2); θ−1)

≤ λC(x∗(1); θ−1) + (1− λ)C(x∗(2); θ−1)

= λJ∗(θ−1, a
(1)
0 ) + (1− λ)J∗(θ−1, a

(2)
0 ).

Hence J∗(θ−1, ·) is convex.
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