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1. Introduction9

Consumption-saving problems in the presence of shocks to income and return on saving do not gener-10

ally permit closed-form solutions. These problems have been central to heterogeneous-agents incomplete-11

market models in which households are hit by uninsurable, idiosyncratic shocks to their income or the12

rate of return on their saving (Bewley, 1983; Imrohoroglu, 1992; Huggett, 1993; Aiyagari, 1994). The lack13

of closed-form solutions has led researchers to use numerical methods to solve these problems. In general,14

there is no explicit aggregation theorem for decisions of heterogeneous households particularly when both15

shocks to their income and the rate of return are idiosyncratic.116

Farmer (1990) argued that a closed-form solution is available for a particular class of preferences, which17

he coined the RIsk-Neutral Constant Elasticity (RINCE) preferences. It is a special case of the Kreps-Porteus18

preferences (Kreps and Porteus, 1978, 1979) and assumes the risk neutrality but the intertemporal elasticity19

of substitution is finite and constant. He obtained the closed-form solution while allowing for an arbitrary20

joint shock process for income and for the rate of return on saving.221

An important property of this closed-form solution is that both the value and the policy functions22

of a decision-maker are linear in her wealth. The decision-maker’s past actions affect the current value23

and policy functions only through her current wealth. All coefficients on wealth in these functions are24

determined exogenously by the stochastic process of real interest rates and the preference parameters. The25

linearity of a solution has been exploited to obtain aggregation in macroeconomics models since Gertler26

(1999).27

This paper shows that there was an implicit assumption made by Farmer (1990) when he obtained the28

linear closed-form solution. The paper provides a counterexample in which this assumption is invalid.29

When the assumption is violated, the true solution is no longer linear in wealth, and linear aggregation30

fails.31

The assumption is that the “natural” borrowing limit (Aiyagari, 1994) never binds; that is, the decision-32

maker never finds it optimal to borrow more than she can repay with certainty. When formulating the33

recursive version of the decision problem, Farmer (1990) only required that the decision-maker not leave34

any debt upon dying (i.e., in the terminal period), but imposed no borrowing constraints before the termi-35

nal period. His linear closed-form solution is the solution to this recursive problem.36

However, when the aforementioned implicit assumption is violated, the closed-form solution in Farmer37

(1990) implies that the decision-maker accumulates so much debt that she cannot repay when her flow in-38

come turns out to be low. In other words, it is not a solution to the original, nonrecursive problem when the39

natural borrowing limit binds.3 The counterexample in the present paper is a two-period example; in the40

second period, flow income is random and may become zero with strictly positive probability. Given that41

the second period value function is linear in wealth as described in Farmer (1990) and that no borrowing42

constraint is imposed in the first period, the decision-maker has an incentive to borrow in the first period.43

This incentive is because her future income is, on average, higher than the current cash-on-hand and be-44

cause she has a consumption-smoothing motive. However, if her flow income in the second period turns45

out to be zero, she cannot repay debt while entertaining non-negative consumption.46

Therefore, a valid recursive formulation requires some borrowing constraints not only in the terminal47

period but also in the periods beforehand; however, then the solution is no longer linear in wealth. Once we48

impose some borrowing constraints, whether natural or ad hoc, we have occasionally binding constraints49

in the decision problem, and these create kinks in the value and the policy functions. I demonstrate this50

point by adding a borrowing constraint to the above counterexample.51

Losing the linearity means much. Since Gertler (1999), the RINCE preferences have been widely used in52

macroeconomic models because the linearity of the value and policy functions can be exploited to facilitate53

1The only exception that I am aware of is Braun and Nakajima (2012). Assuming a homothetic utility function as well as a particular
correlation structure between the income and the rate of return shocks, Braun and Nakajima establish an aggregation result.

2They are only required to take on non-negative real values.
3Another way to put it is that the recursive formulation in Farmer (1990) is incorrect when the implicit assumption is not satisfied.

2



aggregation in the presence of uninsurable, idiosyncratic shocks.4 Given that all households face the same54

real interest rate process, total consumption and saving within a group of households that share the same55

RINCE preferences are linear in within-group aggregate wealth. This property makes the model tractable56

because we do not need to keep track of the within-group wealth distribution when computing aggregate57

variables. However, without linearity, such aggregation is impossible.58

It is possible to preserve the linearity of a solution by imposing more restrictions on the problem struc-59

ture so that the borrowing constraints never bind. One source of the problem is that Farmer (1990) allowed60

the flow income and the real interest rates to follow any non-negative joint stochastic process. This ap-61

proach is too flexible, and one may be able to restrict the stochastic process and entertain the linearity of a62

solution while keeping the problem both realistic and interesting. Section 4 makes this point.63

However, as I will demonstrate in Section 5, some important classes of problems cannot be analyzed64

while entertaining the linearity. For this purpose I use two models to evaluate how likely the linear solution65

in Farmer (1990) violated the natural borrowing limit. One model features a temporary income shock and66

an income buffer that is provided by either a formal or informal insurance arrangement. The other features67

a large income shock due to job loss that may become persistent because of a search and matching friction68

and a simple yet realistic unemployment insurance. In the former model, I prove an asymptotic result that69

the probability that the linear solution violates the natural borrowing limit in period t converges to one half70

as t goes to infinity. This result does not depend on the details of the model. Conversely, I demonstrate71

the possibility that the natural borrowing limit does not bind for a sufficiently long period when there72

is an income buffer that protects households from downside income risk. This result depends crucially73

on the distribution of the before-transfer income, and for some distributions, too many households need74

to be protected by the income buffer in order to prevent the natural borrowing limit from binding for a75

sufficiently long period. In the latter model, the probability of the linear solution violating the natural76

borrowing constraint is sizable, and that the result is robust to changes in key parameter values, such as77

the unemployment benefit duration and the replacement rate.78

2. The stochastic decision problem in Farmer (1990)79

A decision-maker lives from t = 0 to T and maximizes her lifetime utility evaluated in period 0, v0, by80

choosing a consumption-saving plan, {ct, at+1}
T
t=0, subject to the flow budget constraints. The flow budget81

constraints are given by:82

ct + at+1 ≤ Rtat + ωt, ∀t = 0, · · · ,T, (1)

where Rt denotes the gross real interest rate earned on the period t − 1 saving at and ωt denotes the flow83

income in period t. Both Rt and ωt are allowed to follow any non-negative, joint stochastic process.84

The initial and the terminal conditions for her saving {at} are:85

a0 = a0 (2)

and86

aT+1 ≥ 0. (3)

The decision-maker’s lifetime utility from {ct} follows a recursion:87

vt = w(ct,Etvt+1),∀t = 0, · · · ,T − 1, vT = wT (cT ). (4)

The decision-maker’s problem is to maximize v0 by choosing {ct, at+1}
T
t=0 subject to the flow budget con-88

straints (equation 1), the initial and the terminal condition for saving (equations 2 and 3), and the recursion89

for utility (equation 4), and the non-negativity constraint for consumption: ct ≥ 0, for all t = 0, · · · ,T .90

4Examples include Fujiwara and Teranishi (2008), Carvalho, Ferrero, and Nechio (2016), Basso and Rachedi (2021) and Fujiwara,
Hori, and Waki (2019). These papers and Gertler (1999) assume probabilistic aging to incorporate an overlapping generations structure
in general equilibrium models, while maintaining tractability using age-group-specific aggregation.
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Here the function w in equation (4) is a homogeneous function and is given by:91

w(x, y) = (xρ + βyρ)1/ρ

with β ∈ [0,∞) and ρ ∈ (−∞, 0) ∪ (0, 1].5 The function wT is simply wT (x) = x. Therefore, the utility function92

here is a special case of the Kreps-Porteus preferences (Kreps and Porteus, 1978, 1979), parameterized later93

in Epstein and Zin (1989). It assumes the risk neutrality but the intertemporal elasticity of substitution is94

finite and constant. Hence it is coined a RIsk-Neutral Constant Elasticity (RINCE) preference.95

Importantly, income, {ωt}
T
t=0, and return on saving, {Rt}

T
t=0, are subject to exogenous shocks. When both96

shocks are present, a closed-form solution does not exist for general preference specifications.97

2.1. Characterization of the solution in Farmer (1990)98

Farmer (1990) argued that the above problem permits a rather simple, closed-form solution that is linear99

in a certain measure of wealth. First define two functions, F and G, as100

F(x) :=
(
1 + β

1
1−ρ x

ρ
1−ρ

) 1−ρ
ρ

and G(x) :=
(
1 + β

1
1−ρ x

ρ
1−ρ

)−1
.

Then define two stochastic processes {Qt}
T
t=0 and {ht}

T
t=0 recursively:101

F(QT ) = 1, and Qt = Et[Rt+1F(Qt+1)], for all t = 0, 1, · · · ,T − 1,

and102

hT = ωT , and ht = ωt + Et

[
ht+1

F(Qt+1)
Qt

]
, for all t = 0, 1, · · · ,T − 1.

Here F(Qt+1)/Qt is a stochastic discount factor and ht can be interpreted as human wealth that equals the103

present discounted value of income from period t onwards. The above recursion does not involve endoge-104

nous variables. Therefore, these two stochastic processes are exogenously determined.105

Farmer argued that the solution to the decision problem is written as106

ct = G(Qt)Wt, (5)
vt = F(Qt)Wt, (6)

for all t = 0, 1, ...,T , where Wt denotes the beginning-of-period-t total wealth, defined as the sum of financial107

and human wealth, Wt := Rtat + ht.108

The solution characterized above has a nice property: the optimal consumption and saving are linear in109

wealth. This property is used to obtain aggregation results in some macroeconomic studies discussed later110

in Section 4.111

2.2. Sketch of the proof in Farmer (1990)112

Farmer (1990) provided a sketch of the proof based on a recursive formulation. For any t, any a, and113

any history of exogenous shocks up to period t, let114

Vt(a) := F(Qt)(Rta + ht), (7)
Ct(a) := G(Qt)(Rta + ht), (8)

and115

A′t(a) := Rta + ωt −Ct(a). (9)

5Farmer (1990) also considered a Cobb-Douglas aggregator where ρ is taken to zero, but for notational simplicity I restrict attention
to the ρ , 0 cases. When the planning horizon is infinite, β needs to be further restricted to be less than one.
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Here the dependence of these functions on an exogenous shock history is kept implicit and represented116

by the subscript t. Then the sequence of value functions, {Vt}
T
t=0, and policy functions, {Ct, A′t}

T
t=0, solves the117

following functional equations: in the terminal period T , for any a, and any history of exogenous shocks118

up to period T ,119

VT (a) = max
c,a′

c

subject to the budget constraint, c + a′ ≤ RT a + ωT , and the non-negativity constraint: c, a′ ≥ 0; and, for any120

t = 0, 1, · · · ,T − 1, any a, and any history of exogenous shocks up to period t,121

Vt(a) = max
c,a′

{
cρ + β

(
EtVt+1(a′)

)ρ}1/ρ
subject to the budget constraint, c+ a′ ≤ Rta+ωt and the non-negativity constraint for consumption: ct ≥ 0.122

The proof is based on the backward induction and the first-order condition of the above recursive prob-123

lem.124

3. A counterexample125

What is the problem? The problem is that the above recursive formulation is incorrect. Only when the126

natural borrowing limit is slack in all periods and states is it correct. In this model, however, the natural127

borrowing limit can bind, and the solution proposed in Farmer (1990) is incorrect when it binds. The128

following example illustrates this point.129

3.1. An example where Farmer’s solution is incorrect130

Consider the following two-period model, which is a special case of one presented in Farmer (1990)131

with T = 1. Set the parameters as follows: β = 1, R0a0 + ω0 < 0.5, R1 = 1 (with certainty), and ω1 = 0 with132

probability ϵ < 0.5 and ω1 = 1 with probability 1 − ϵ. Let us calculate Farmer’s solution. First, using the133

recursion for Q and h, we obtain:134

Q0 = E0[F(Q1)] = 1,

and135

h0 = ω0 + E0h1 = ω0 + E0ω1.

Consumption and value are then obtained using the policy and value functions as follows:136

c0 = G(1)W0 =
W0

2
,

c1 = a1 + ω1,

v0 = F(1)W0 = 2
1−ρ
ρ W0,

v1 = a1 + ω1,

where W0 = R0a0 + h0 = R0a0 + ω0 + E0ω1. The optimal saving a1 is, therefore,137

a1 = R0a0 + ω0 − c0

= R0a0 + ω0 −
W0

2

= R0a0 + ω0 −
R0a0 + ω0 + E0ω1

2

=
1
2
{R0a0 + ω0 − E0ω1}.

Because R0a0 + ω0 < 0.5 and E0ω1 = 1 − ϵ > 0.5, the last expression is negative. Hence, the optimal saving138

according to Farmer’s solution is negative.139
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However, this cannot be a solution to the original, nonrecursive problem. In period 1, the decision-140

maker’s flow income ω1 may be zero with positive probability ϵ. In that state, with zero income, the141

decision-maker cannot repay her debt while entertaining non-negative consumption. Hence, the terminal142

condition a2 ≥ 0 must be violated in the zero-income state.143

3.2. Diagnosis144

What is wrong? In Farmer’s recursive formulation, the household’s choices are restricted only by the145

flow budget constraints, except for the terminal period in which saving must be non-negative. However,146

to ensure that the household does not leave any debt upon dying in all states, one must impose some147

borrowing constraints, such as the natural borrowing limit or an ad hoc borrowing limit (Aiyagari, 1994),148

which restricts the household’s ability to borrow before the terminal period. When the borrowing constraint149

binds, the value function is no longer linear in a proposed measure of wealth and has a kink above which150

the borrowing constraint becomes slack.151

The natural borrowing limit is the maximal amount of debt a decision-maker can repay with certainty152

without violating the non-negativity constraint for consumption. The natural borrowing limit in the two-153

period example is:154

a1 ≥ −min
ω1

R1
,

where the minimization on the right-hand side is over the set of all possible states in period 1. Because155

R1 = 1 with certainty and minω1 = 0, the natural borrowing limit in the example is equivalent to a1 ≥ 0; that156

is, no borrowing is allowed. This constraint binds as far as R0a0+ω0 < 0.5, and it is slack for R0a0+ω0 ≥ 0.5.157

Failing to take this constraint into account can leads us to an incorrect solution. The period-0 value and158

policy functions take the form as in equations (7)-(9) for a0 ≥ (0.5 −ω0)/R0. For a0 < (0.5 −ω0)/R0, however,159

they are given by:160

C0(a) = R0a0 + ω0,

A′0(a) = 0,

and161

V0(a) = ((R0a0 + ω0)ρ + (E0ω1)ρ)1/ρ
= ((R0a0 + ω0)ρ + (1 − ϵ)ρ)1/ρ ,

which is obviously nonlinear in a.162

In incomplete-market models with income risk, if the utility function is a time-separable, expected util-163

ity with geometric discounting, the Inada condition ensures that the natural borrowing limit never binds:164

if it binds, the household’s consumption becomes zero after some history of shocks, and it is suboptimal165

under the Inada condition.166

Does the assumption of a CES preference aggregator imply the Inada condition? Although the prefer-167

ence aggregator is nonlinear in current consumption, the answer is no. This failure of the Inada condition168

is most clearly observed in the above two-period example. Substitute the the identity v1 = c1 into the169

preference aggregator in period 0 to obtain:170

v0 = max
c0,a0
{cρ0 + β(E0c1)ρ}1/ρ.

Hence, the decision-maker has an incentive to smooth average consumption over time, but when the ex-171

pected future consumption is sufficiently high, the decision-maker does not mind consumption (or the172

continuation value) becoming zero in some future states because of risk neutrality. When the expected173

future income is sufficiently high relative to the current cash-on-hand, the decision-maker wants to borrow174

as much as possible so that the natural borrowing limit binds.175
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3.3. A correct recursive formulation with the natural borrowing limit176

It is possible to formulate the recursive problem while incorporating occasionally binding natural bor-177

rowing constraints because the maximal amount that can be repaid is also defined recursively. Define the178

stochastic process of natural borrowing limits, {aLB
t+1}

T
t=0, as follows:179

aLB
T+1 = 0

and180

aLB
t = max

aLB
t+1 − ωt

Rt
, ∀t = 0, 1, · · · ,T.

Note that for all t, though implicit, the left-hand side object aLB
t is contingent on the history of shocks up181

to period t − 1 (inclusive). Each variable in the maximand on the right-hand side shares the same history182

up to period t − 1 with the left-hand side variable, but also depends on the shock realization in period183

t. The maximization is over the set of all the possible shock realizations in period t. This variable aLB
t is184

forward-looking but determined exogenously. Hence, it can be computed separately from endogenous185

variables.186

Thus, the correct recursive formulation is given as follows. First, in the terminal period T , the problem187

is identical to that given in Farmer (1990). For any t ≤ T − 1, any a, and any history of exogenous shocks up188

to period t,189

Vt(a) = max
c,a′

{
cρ + β

(
EtVt+1(a′)

)ρ}1/ρ
subject to the budget constraint, c + a′ ≤ Rta + ωt, and the natural borrowing limit: a′ ≥ aLB

t .190

A solution to this problem is not as simple as given in Farmer (1990). The natural borrowing limit is an191

occasionally binding constraint, and the decision rule is necessarily nonlinear. In addition to nontractabil-192

ity, the solution may be unrealistic, because once the natural borrowing limit binds, consumption falls to193

zero permanently, which is not a desirable property if the model is used to match actual data.194

4. Discussion195

One way to resurrect the linearity of the solution is to impose additional restrictions so that the natural196

borrowing limit never binds. For example, one may assume away the possibility of a temporary, negative197

shock to income, which incentivizes households to borrow. Alternatively, one may instead assume that a198

decision-maker is sufficiently patient so that she finds it optimal to save, even if hit by the largest possible199

negative temporary income shock. With such restrictions, the solution in Farmer (1990) would be indeed200

correct.201

These restrictions may not be as restrictive as they might appear. Gertler (1999) formulated a tractable,202

overlapping generations model using the RINCE preferences and probabilistic aging, in order to study the203

macroeconomic effects of fiscal policy and of social security. Young people age (or does not age) with a204

constant probability, while older people die with a constant probability. As far as the older person’s labor205

income is sufficiently lower than the younger person’s, and the older person’s labor income does not in-206

crease much over time, nobody in the economy has incentives to borrow. In this case, the natural borrowing207

constraint never binds, and consumption and savings are linear in wealth. Because of the linearity of the208

decision rules, the aggregate equilibrium behavior of the model depends on the wealth distribution only209

through the total amount of wealth (the sum of capital stock and human wealth) in the economy and the210

fraction (or the amount) of wealth held by the young. This property facilitates equilibrium computation.6211

However, it is worth noting that some interesting model specifications may be ruled out by imposing212

additional restrictions on the model. To demonstrate this point, I consider in the next section a model with213

a temporary, small income shock and a model with a possibly persistent, large income shock. These models214

6The same modeling strategy is used in Fujiwara and Teranishi (2008), Carvalho, Ferrero, and Nechio (2016), Basso and Rachedi
(2021), and Fujiwara, Hori, and Waki (2019) to introduce an overlapping generations structure into New Keynesian models.
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are used to evaluate how likely it is that the linear solution in Farmer (1990) violates the natural borrowing215

limit.216

5. Evaluating the relevance of the binding borrowing constraint217

Now I use two models to evaluate how likely the natural borrowing constraint binds. To simplify the218

analysis, I make two key assumptions in both models. The first assumption is that βR = 1. This assumption219

simplifies the marginal propensity to consume out of wealth for two reasons. First, the real interest rates220

are deterministic and constant, and, therefore, both {Qt} and the marginal propensity to consume become221

deterministic. Second, when βR = 1, the marginal propensity to consume out of wealth is independent222

of the elasticity of intertemporal substitution. Indeed, under the assumption of βR = 1, the household’s223

decision rule is identical to a standard quadratic utility framework.224

The assumption of βR = 1 is appropriate when examining whether it is valid to assume that the bor-225

rowing constraint never binds. Consider a heterogeneous-agent incomplete-market macroeconomic model226

with idiosyncratic labor income risk, such as described in Aiyagari (1994) and Huggett (1993) and imag-227

ine that the households in the model have the common RINCE preferences. Suppose that the borrowing228

constraint never binds in a steady-state equilibrium of the model. Then, because the households are risk229

neutral and do not have precautionary saving motives, βR = 1 would hold in a steady-state equilibrium. I230

can examine whether such a steady-state equilibrium exists by analyzing how frequently the natural bor-231

rowing limit is actually violated when βR = 1. If the natural borrowing limit is frequently violated under232

the assumption of βR = 1, then it suggests that there is no steady-state equilibrium in which the natural233

borrowing limit is virtually slack. In other words, the natural borrowing limit must be imposed in such234

models.235

For the second assumption, I consider an infinite horizon model by letting T tend toward infinity. Even236

under the first simplifying assumption of βR = 1, the marginal propensity to consume is time-dependent237

if T is finite. In contrast, the marginal propensity to consume becomes constant over time in an infinite238

horizon model. This property not only simplifies notation but also simplifies the savings dynamics.239

In an infinite horizon model with βR = 1, the dynamics of savings have a simple expression because the240

marginal propensity to consume out of wealth is constant at 1 − β. Substituting ct = (1 − β)(Rat + ht) and241

βR = 1 into the budget constraint, I obtain the equation that governs the savings dynamics:242

∆at+1 := at+1 − at = β{ωt − (1 − β)Etht+1}. (10)

Note that the right-most expression contains exogenous shocks and their expectations only. If, for example,243

the flow income ωt follows a time-homogeneous Markov chain, the right-most expression also follows a244

time-homogeneous Markov chain. Moreover, the latter chain is easily calculable from the former.245

It is worth emphasizing that my assumptions so far do not imply a negative drift for savings. In this246

sense, these assumptions are not pushing the average savings toward the natural borrowing limit. To247

observe this, take the unconditional expectations of both sides in equation (10) and obtain:248

E∆at+1 = β(Eωt − (1 − β)Eht+1) = β

Eωt − (1 − β)
∞∑

s=t+1

βs−t−1Eωs

 . (11)

As long as {ωt} is a stationary process, the right-most expression is zero, because Eωt = Eωs for any t and s.249

Hence, the savings stay constant in expectations and there is no negative drift for savings.250

5.1. A model with temporary income loss251

The first model is one with a transitory shock to income. I model a transitory shock as {ωt} being252

a non-negative, independent and identically distributed (IID) process with a strictly positive variance.253

Let ωmin ≥ 0 be the lowest possible value that ωt can take. Then the natural borrowing limit is given by254

aLB = −βωmin/(1 − β).255

8



Denoting the mean of ωt by ωe, equation (10) reduces to256

∆at+1 = β(ωt − ω
e). (12)

Because the variance of ω is strictly positive, the savings follows a random walk without drift. Then,257

at+1 = a0 + β

t∑
s=0

(ωt − ω
e), (13)

and258

var(at+1) = β2σ2
ω × (t + 1), (14)

where σ2
ω is the variance of ωt.259

First, I show that, asymptotically, the natural borrowing limit will be violated with a probability of260

one-half. The probability of the period-t savings violating the natural borrowing limit is given by:261

Prob (at+1 < aLB) = Prob
 at+1 − a0

βσω
√

t + 1
<

aLB − a0

βσω
√

t + 1

 . (15)

By the central limit theorem, (at+1 − a0)/
√

t + 1 converges in distribution to N(0, β2σ2
ω) as t → ∞, and262

lim
t→∞

Prob
 at+1 − a0

βσω
√

t + 1
<

aLB − a0

βσω
√

t + 1

 = Φ (0) = 0.5, (16)

where Φ denotes the cumulative distribution function for the standard normal distribution. This asymp-263

totic result is strong: it is independent of the value of the natural borrowing limit or of the variance of ω or264

the initial asset level a0.265

Of course, for a finite t, the probability that the natural borrowing limit binds is dependent on these266

parameters. To observe this relationship, suppose that ωt can be written as ωt = min{ωmin, γt}, where γt267

is a non-negative IID process with a strictly positive variance and with the smallest possible realization268

γmin < ωmin. This assumption can be interpreted as follows. A household receives random flow income269

γt, but there is either a formal or informal insurance arrangement so that when the flow income is less270

than a threshold ωmin, the difference between the actual and threshold income is compensated by a transfer271

payment. In other words, there is an income buffer. The income after transfer equals to the lower bound272

ωmin with probability ϵ := Prob(γt ≤ ωmin). The natural borrowing limit is the same as before and is given273

by aLB = −βωmin/(1 − β).274

Now imagine that the household keeps receiving the lowest possible income after a transfer payment,275

ωmin, and compute how many periods it takes to violate the natural borrowing limit. Let ωe denote the276

mean of ωt.7 Then if the household keeps drawing ωmin from period 0 to t, its asset level is given by277

at+1 = a0 + β(t + 1)(ωmin − ω
e). This asset level is lower than aLB if and only if278

t + 1 >
a0 − aLB

ωe − ωmin
. (17)

Therefore, the larger the right-hand side expression, the longer it takes for the natural borrowing limit to279

bind with strictly positive probability.280

Under what condition for parameters does the natural borrowing limit remain slack for a sufficiently281

long period? I argue below that the ratio ωmin/ω
e plays an important role. For brevity, let a0 = 0. Then the282

right-hand side reduces to:283

−aLB/ω
e

1 − ωmin/ωe =
β

1 − β
ωmin/ω

e

1 − ωmin/ωe . (18)

7In other words, ωt = ϵωmin + (1 − ϵ)E[γt |γt > ωmin].
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If we consider an annual model where the preference discount rate is 2%, β/(1 − β) is approximately 50.284

Then, for the natural borrowing limit not to bind for, say, 40 years, the ratio ωmin/ω
e needs to be as high as285

0.44. If ωmin/ω
e is much lower and is, say, around 0.2, then it takes only about 13 periods for the natural bor-286

rowing limit to bind with strictly positive probability. Therefore, the ratio ωmin/ω
e needs to be sufficiently287

high for the linear solution not to violate the natural borrowing limit within a relatively short period.288

Is 0.44 too high for a value of ωmin/ω
e? The answer, of course, depends on the distribution of γt. Here289

I examine two distributions for γt for which the ratio ωmin/ω
e can be analytically calculated. The first290

distribution is a Pareto distribution with parameter α > 1. Then a closed-form expression for ωmin/ω
e can291

be obtained and is given byωmin/ω
e = (α−1)/(α−ϵ).8 If the Pareto parameter α equals 1.5, thenωmin/ω

e ≈ 0.44292

requires that ϵ ≈ 0.364. In other words, the income buffer protects the bottom 36% of the before-transfer293

income distribution. The second distribution to examine is a uniform distribution between 0 and 1. For294

ωmin ∈ [0, 1], ϵ = Prob(γt ≤ ωmin) = ωmin and the mean of ωt is given by we = (1+ω2
min)/2. Then ωmin/ω

e ≈ 0.44295

requires that ωmin = ϵ ≈ 0.234. Hence, the income buffer protects the bottom 23% of the before-transfer296

income distribution.297

Note that these two distributions are chosen only to obtain some reference points. If the distribution of298

γt has an upper tail that diminishes more quickly than the Pareto and uniform distributions, the income299

buffer may need to protect a much smaller fraction of households at the bottom of the before-transfer300

income distribution. For such distributions, it might be possible to achieve simultaneously two goals: (1)301

the natural borrowing limit does not bind for a sufficiently long period with probability one, and (2) not302

too many households are protected by the income buffer.303

5.2. A model with large, persistent income loss304

Now I parameterize the flow income process to capture income risk associated with unemployment.305

The only source of uncertainty is idiosyncratic labor market risk. Each household receives the same labor306

income, w, if employed. Once separated, households start receiving the unemployment benefit, b. Each un-307

employed household may find a job with an exogenous job-finding rate, depending on the unemployment308

spell. The unemployment benefit duration is finite and, after a household remains unemployed for a given309

number of periods, the household receives no flow income during the rest of the unemployment spell.310

Calibration. I pick values for some parameters from Krusell, Mukoyama, and Şahin (2010): one model311

period is set to six weeks, the preference discount factor β is set to 0.995, and the separation rate is set to312

0.05.313

There are some deviations from Krusell, Mukoyama, and Şahin (2010). Because Krusell, Mukoyama,314

and Şahin (2010) considered an incomplete-market general equilibrium model with labor market search315

and matching, both the real interest rate and the job-finding rate are endogenous in their model. Here, I316

focus only on the household’s problem, and set the real interest rate and the job-finding rate exogenously.317

The gross real interest rate R is set to 1/β. I defer the description of how the job-finding rate is calibrated.318

Unlike Krusell, Mukoyama, and Şahin (2010), I assume that the duration of unemployment benefits319

is finite and that the job-finding rate varies with the unemployment spell. Because the unemployment320

benefits duration is up to 26 weeks for most states in the U.S., I assume that the unemployed households321

can collect the unemployment benefits for four consecutive periods (24 weeks) after losing a job cannot322

collect benefits from the fifth consecutive period of unemployment. The replacement rate is set to 0.4, that323

is, b = 0.4w. The wage w is assumed to be the same across workers and is, without loss of generality,324

normalized to one.9325

To model a finite unemployment benefit duration, I assume that there are six possibilities for the in-326

dividual household’s labor market status: employed, unemployed for j periods where j = 1, 2, · · · 4, and327

unemployed for more than or equal to five periods. To put it succinctly, the employment status s is drawn328

8This is because E[γt |γt ≥ ωmin] = αωmin/(α − 1).
9This is another point of departure from Krusell, Mukoyama, and Şahin (2010). In their general equilibrium model, households

with different asset levels receive different wages because wages are determined via Nash bargaining and households’ threat points
depend on their asset levels.
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from the set S = {e, u1, u2, · · · , u4, u5}. Flow income ω is determined solely by s, and satisfies ω(e) = w,329

ω(u j) = b for j = 1, 2, · · · 4, and ω(u5) = 0.330

The duration-specific job-finding rates are computed using the estimated duration dependence in Ho-331

bijn and Sahin (2009). According to Hobijn and Sahin (2009), the estimated function for the U.S. is f (m) =332

0.755 × exp(−0.1158m), where m denotes the unemployment spell (in months) and f (m) is the job-finding333

rate when the unemployment spell is m months. Because one model period is approximately 1.4 months,334

I compute the job-finding rates f j := f (1.4 × j), where j = 1, 2, · · · , 4 is the unemployment spell in model335

periods, and use these rates as transition probabilities to s = e from s = u j for j = 1, 2, · · · , 4. With the re-336

maining probability 1 − f j, the state transits from u j to u j+1 for j = 1, 2, · · · , 4. For simplicity, the job-finding337

rate in state s = u5 is also set to f5 := f (1.4 × 5). Note, however, that in state u5, unlike for j ≤ 4, the state338

stays the same, with the remaining probability 1 − f5. In conjunction with the exogenous separation rate of339

0.05, these numbers determine the whole transition matrix of the exogenous state.340

Later I vary both the replacement rate and the benefit duration to examine how these parameters affect341

the probability of the borrowing constraints to bind.342

Baseline results. The main exercise is to solve and simulate the model using the linear closed-form solution343

in Farmer (1990), and evaluate how likely the natural borrowing limit is to be violated. To this end, I344

simulate the model for N = 50000 households and 1000 periods. The initial distribution of the exogenous345

state s is set to its stationary distribution. The initial asset level a0 is set to zero.346

The natural borrowing limit depends on the current employment status but neither on time nor on the347

history of shocks. It satisfies348

aLB(s) = max
s′∈J(s)

aLB(s′) − ω(s′)
R

,

where J(s) is a set of s′ such that the transition probability from s to s′ is strictly positive. The natural349

borrowing limit is zero for s = u4 and s = u5, because it is possible that the next period state is s′ = u5
350

for which the flow income is zero, and that the state stays there forever. In contrast, for other states,351

s ∈ {e, u1, u2, u3}, it is negative because it is impossible to switch immediately to u5, and the household in352

these states is guaranteed to receive some flow income with certainty in the future.353

In the simulated data, a sizable fraction of households violated the natural borrowing limit. Figure 1354

shows the time series of the fraction of households whose savings are below the natural borrowing limit.355

Initially, this fraction is close to zero but increases over time to around 25% within 10 years, 30% within 20356

years, and 33% within 30 years.357

To understand why this pattern emerges, it is important to note that when the underlying exogenous358

state s evolves as a first-order Markov process and when ωt depends on the exogenous state only through359

the current st as ωt = ω(st), equation (10) implies that ∆at+1 is pinned down solely by st. Moreover, in360

the baseline specification, ∆a is positive if and only if the current state is s = e. In all other states of361

unemployment, savings decrease.362

Figure 2 depicts the time series of the fraction of households whose savings are below the natural363

borrowing limit, conditional on the current state. Because some households transit to the employment state364

from unemployment states in which savings decrease, some have already violated the natural borrowing365

limit. Even though they increase savings in state s = e, the increase may not be enough to lift the savings366

above the natural borrowing limit. This is the reason why the share keeps increasing in state s = e. The367

same pattern is also observed in state s = u1, simply because some households transit directly from s = e368

to s = u1 when separated. For states s ∈ {u3, u4, u5}, the opposite pattern is observed. Initially most of the369

households in these states violate the natural borrowing limit because they start with zero savings and their370

savings decrease in these states. But, over time, some households who have accumulated positive savings371

in state s = e become unemployed and transit to these states, thereby lowering the share of households372

who violate the natural borrowing limit.373

Figure 3 shows, for each state, the histogram of savings in selected time periods, together with the374

natural borrowing limit (a red dotted line). It is clear that, in all states, a sizable fraction of households375

violates the natural borrowing limit.376
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Results with a different replacement rate. If the replacement rate is raised, the natural borrowing limit is377

relaxed and, thus, is less likely to bind. However, I still find that a sizable fraction of households violates378

the natural borrowing limit even when the replacement rate is set to a high value. For example, if I double379

the replacement rate to 0.8, the fraction of households that violate the natural borrowing limit is around380

8% after 10 years, 13% after 20 years, and 16% after 30 years (Figure 4a). These numbers are about a half of381

those found under the replacement rate of 0.4, but definitely not negligible.382

Results with a different benefit duration. Another parameter that is likely to be important is the unemploy-383

ment benefits duration because the duration, together with the replacement rate, determines the natural384

borrowing limit. For example, the natural borrowing limit for the employed in the baseline model equals385

the present value of the unemployment benefits for the following four periods (= maximal duration of386

benefits). Therefore, if the duration is extended from four periods, the natural borrowing limit is relaxed387

and is less likely to bind.388

To examine how this parameter affects the probability that the natural borrowing limit is violated, I also389

simulated the model using a longer unemployment benefit duration of nine periods (=54 weeks), roughly390

twice as long as the actual maximal duration of 26 weeks in the U.S.391

The result is that doubling the unemployment benefit duration has a smaller effect than doubling the392

replacement rate. Figure 4b plots the share of households that violate the natural borrowing limit for each393

period t. The share is higher than the share in Figure 4a. Again, these numbers are smaller than those394

under the baseline calibration but, nevertheless, not negligible.395

6. Conclusion396

This paper has reexamined whether the consumption-saving problem under the RINCE preferences397

implies linear decision rules for consumption and savings. Whether the linearity holds or not is important398

because it has been exploited to facilitate aggregation in macroeconomic models. I have pointed out that399

the proof of linearity in Farmer (1990) implicitly assumes that the natural borrowing constraint never binds,400

and I have provided a counterexample in which the linear decision rule in Farmer (1990) indeed violates the401

natural borrowing limit and therefore is not a correct solution to the problem. I have used two models that402

feature some realistic characteristics of income risk to demonstrate that the linear decision rule in Farmer403

(1990) violates the natural borrowing limit with strictly positive probability, and that the probability can404

indeed be sizable.405

Given these findings, one needs to be cautious about using the RINCE preferences to exploit the lin-406

earity of a solution to facilitate aggregation in incomplete-market macroeconomic models. Unless one407

sufficiently restricts the household’s problem structure so that the natural borrowing limit never binds,408

one may likely use an incorrect solution to obtain the wrong aggregation results.409
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Dynamics of the share of households that violate the natural borrowing limit at each point in time are depicted. Time t
is on the horizontal axis and the share of households that violate the natural borrowing limit at each point in time is

on the vertical axis.

Figure 1: Share of observations that violate the natural borrowing limit
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Dynamics of the share of households that violate the natural borrowing limit at each point in time for each state are
depicted. In each panel, time t is on the horizontal axis and the share is on the vertical axis.

Figure 2: Share of observations that violate the natural borrowing limit, conditional on the current state
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In each panel, the savings histograms for the corresponding state are shown for selected time periods. The natural
borrowing limit is indicated by a vertical, dotted line.

Figure 3: Savings histograms conditional on the current state
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(a) Replacement rate = 0.8 (b) Duration = nine periods
Panel (a) shows the dynamics for the replacement rate of 0.8. Panel (b) shows the dynamics for the unemployment

benefit duration of nine periods. In each panel, time t is on the horizontal axis and the share of households that violate
the natural borrowing limit at each point in time is on the vertical axis.

Figure 4: Share of observations that violate the natural borrowing limit
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